Motivation

e Algorithms where a fixed-size subset of vectors is stored and updated in each iteration.

A The subspace iteration (SI) algorithm.
A The LOBPCG algorithm.

e A larger subspace is used for rapid convergence (left figure).

e Though the iterations get fewer, the cost increases at least quadratically.

e If we reduce the block size during the process, the convergence rate will not decay imme-
diately (right figure).
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The shrink-and-enlarge technique

e Shrinkage: Reduce the block size for a lower computational cost.
e Enlargement: Increase the block size for a better convergence rate.

e [dea: Alternatively use the shrinkage and the enlargement, reduce computational com-
plexity while keep the convergence rate satistying.

Shrinkage Enlargement

nex nes nes nex nex

X drop
I
|
|
>

X —Xg—-X—X

o t
Nex + Nes
| J

» : Normal iterations

mmw)  : [terations with lower cost

A general framework

e A framework for applying the shrink-and-enlarge technique in block eigensolvers.

Input: A matrix A, an initial guess XV,
Output: The approximate eigenpairs (A, X).
1 Obtain an initial approximation (A, X) by the Rayleigh-Ritz process on span{ X"}
. for £k =1, 2, ... until convergence do
. Check convergence.
+  Update X (e.g., X < A~'X for the SI algorithm).
» if ifenlarge() then
6: X [X, Xdrop]°
. end if
& Construct the search space S by X (possibly, also by other information).
o.  Obtain the approximate eigenpairs (A, X') by the Rayleigh-Ritz process on S.
1. if ifshrink() then
11: X, dep] +— X.
122 end if
13 end for
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Adaptive strategies

e We provide three adaptive strategies to determine the timing of employing the shrinkage
and the enlargement.
A fix: Alternatively employ the shrinkage and the enlargement at fixed intervals.

A slope: Employ the shrinkage when the slopes of the residual curves are steep and
employ the enlargement when the slopes are shallow.

A slopek: Use the average slope of several iterations in the slope.

The convergence history

e Solving 100 smallest eigenpairs of matrix Muu from [3].
e The residual curve of the LOBPCG algorithm.
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e The residual curve of the steepest descent (SD) algorithm.
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Overall performance

e The performance of the proposed technique on four popular eigensolvers.

A The test matrices are 1: Muu, 2: shuttle_eddy, 3: mario001 and 4: Andrews from [3].
A The sizes of the four test matrices range from 7, 102 to 60, 000.

A Solving 1% smallest eigenpairs of the test matrices, at most 500, at least 100.

A Time limit is set as 3600 seconds.

w/0 fix slope slopek

Algorithm No. time 1ter | time 1ter save |time 1ter save | time 1ter save

1 [6.395 76 [5.395 80 16% |5.104 81 20% |5.103 84 20%
(Inverse)
Subsnace 2 30.57 196 |23.04 212 25% [22.03 222 28% |22.08 224 28%
iteral’zion 3 [287.9 113 (207.1 121 28% [198.1 124 31% [198.5 128 31%
412227 79 [1608 83 28% [1586 85 29% | 1581 86 29%

1 [75.28 990 [59.21 1090 21% |74.63 1077 1% |53.28 1102 29%
Steepest 2 |205.6 507 [115.9 592 44% |155.7 577 24% (114.1 596 45%
descent 3 [3566 1144|2268 1229 36% [2909 1211 18% | 2111 1248 41%
4 11622 272 [ 1164 292 28% [ 1393 288 14% | 1072 301 34%

|
3 |808.8 197 [552.6 181 32% | 604 183 25% |h37.5 185 34%
4

LOBPCG
550.8 88 [432.5 94 21% [476.3 89 14% |434.8 95 21%
"""""" 1 (4525 82 3412 87 25% [33.94 87 25% (3452 90 24%
TraceMIN 2 [128.1 197 [92.64 215 28% |91.56 226 29% |92.93 229 27%
3| oo - (2334 125 100%]2147 129 100%|2149 133 100%
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