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Preliminaries



Nonlinear eigenvalue problems
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e Nonlinear eigenvalue problem (NEP):

T(A)v =0, veC'\ {0}, A €.

- Q: a connected region with a smooth boundary.
- T(&): a holomorphic E-dependent matrix in Q.
- A: eigenvalue.

- v: (right) eigenvector.

e Our goal:

- To find all eigenvalues A1, ..., Ac lying in Q,

as well as their corresponding (right) eigenvectors vy, ..., V.



Some examples of NEP — 3/23 —

e Generalized eigenvalue problems: (A—AB)v=0. (T(§) =A—E&B)
e Polynomial eigenvalue problems: (Ag + AA; + A2A; + -+ + APA,)v = 0.

e Quasi normal mode (QNM) analysis for nanophotonic devices:

p
SLV=0, r():C-C,  LeC™, j=1,...,p
j=1

- r;j(-): rational functions.

e Acoustic analysis of the Helmholtz wave equation:

(A+AB+ A°C)v=e"'Sy, TeR, AB,CSeC™",



Contour integral-based nonlinear solver — 4/23 —

e Approximate the moments

1 .
M; = —J gT(8)"'Zdg,
2T 30
by quadrature rules (for example, the mid point rule)
1 N—1 . 1
Min == > ¢(6)0'(6)T(9(6)) " Z.
j=0
And solve some small-size problems with these moments to approximate the
eigenpairs.
— The nonlinear Sakurai-Sugiura algorithm.

— The nonlinear FEAST algorithm.
- Beyn’'s method.

e Drawback: A lot of large, sparse linear systems have to be solved!



Multi-shift GMRES — 5/23 —

o If T(§)=I—EA, we can solve all T(§)1z,j=0,1,..., N—1, with a single Arnoldi
process.

- The Krylov subspaces of I — ;A are the same.

Km(I—EA, 2)=Km(A, 2), j=0,...,N—1.

- If we have
AUp = Um+1ﬂm

by the Arnoldi process, we also have

(I—=&AWm =Uns1l,,— §H,,).

- The approximate solution can be obtained by solving N small least squares
problems

Upn - Ctrc_ljyminll(ilm —&H,))y — llzllex||,.



Inifinite GMRES — 6/23 —

e To solve T(&p)~1z for some &q close to 0, we can transform it into

p o -1
T(&) 'z — (ZE.—:)TU)(O)) z — (Lo—&oL1) '2=L ' I—8oL1L51) 12,

@\ (2)
where
T(0) T0©@ 120 %' 0 | T
I I O 0
£0= I ’ £1= I ' ’ 2= .
. 0 '
0
] I ] I O ] L -

(1). Taylor expansion at £ = 0.
(2). Companion linearization.

e We can solve several different £y’s with a single Arnoldi process on LlL‘gl.

e Advantage: only one factorization on T(0) is needed.



Inifinite GMRES - Algorithm — 7/23 —

Input: Maximum iteration m, the parameter-dependent matrix T(§): C —» C"™*", the
right-hand side z € C" and the points to be solved §; forj=0,..., N—1
Output: Approximations xo;~ T(§;)"1zforj=0,...,N—1
1. Linearize T to

T(0) TR@ ... T0O)] 0 ]
I 0
Lo = I _ , L1= L ,  p>m
I ] I 0]

. Perform m iterations of Arnoldi process on (£1£;t, 2) to obtain £1£7 U = Uni1H
Set y; — argmin,||(,, — §H,,)y — llzlle1||, forj=0, ..., N—1

« Set xj « L Umy; forj=0,..., N—1

Set xopj < xj(1:n)forj=0,...,N—1

m

w

v

e Remark: when taking p > m, we can assume there is no truncate error introduced
by Taylor expansion. In other words, the parameter-dependent matrix T(§) is
expanded infinitely.



Accelerate Beyn’'s method
with infinite GMRES



Beyn’s method with infGMRES — 8/23 —
Input: The parameter-dependent matrix T(§): C — C"*", the initial guess
Z=1[z,...,2«] € C"™K, the contour ¢ and quadrature nodes 6,'s forj=0, ..., N—1

Output: Approximate eigenvalues A and eigenvectors V

1:

2:

3:

4.

fors=1,..., kdo
Use infGMRES to solve T((6,)) "zs forj=0, ..., N— 1 simultaneously
end for

1, ~1
Set Moy — 2y 9/ (6)T(0(6)) 2

_ , -1
Set My < iy 200 9(6)9"(6)T(9(6))” Z

Singular value decomposition Moy = VoZoW
Set My «— ViMiyWoZ;?

Eigenvalue decomposition M1 y = SAS™!

Set V « VS

e The simple implementation is not efficient enough!

- High accuracy can not be reached with a modest GMRES iteration m.
- Storing Arnoldi subspace U, requires O(m?n) memory.



The accuracy of the simple implementation
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——Domain of interest Quadrature nodes A Expansion point

e The Taylor expansion is employed on the center of a circular contour.

e The relative residuals of 16 linear parameterized systems of the gun problem are
shown.

e The accuracy is obviously higher when scaling T(a& + b) is used (right).
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e On the scaling technique:

— Reveal the relationship between NEP and their scaled problems.
(It does not make sense that a scaling will increase the accuracy of the Taylor
expansion.)

— Provide a novel weighting strategy to accelerate the convergence of infGMRES.
e On the memory usage:

- Adopt the technique of TOAR to represent the Arnoldi basis compactly (Omitted).



A weighting technique



The scaling in infGMRES is a balancing on the linearization —11/23 —

e Solving T(E)"1z at £ = &, is equivalent to solving T(E)~1z at € = Ey/p, where
T(8) =T(p&).

e The linearization becomes (ﬁo — %ﬁl)

1 N
Z, where

T(0) pT32 2159 ... ppTE0]
I
,CNO = I , [’,1 = £1.
i r
e We notice that
) . 1. 1 . &0 . 1
,Co - Dp ,Con, Eﬁl == Dp £1Dp, Eo - ?Ll == Dp ([,() - EOL‘l)Dp;
where _ i}
I
o

pPI



The scaling in infGMRES is a balancing on the linearization — 12/23 —

e Actually, more degrees of freedom can be introduced.

Lemma 1 Suppose dje C\{0} and T; € C"*" for j=0, ..., p, and

- : (To T1 T2 -+ T - —
doI 0 Il 2 P

dil _ |1 o

_ dpl | ; _ I 0]

Then, for any scalar § € C and vector ze (",

(D~Y(Lo—ELL)D) 2=

e Therefore, the scaling in INnfGMRES can be regarded as a balanced companion
linearization (D~1£oD, D~1£1D).



The balancing on linearization is a weighting in the least squares problem — 13/23 —

o If the Krylov subspace (I —&oL1£;?, 2) is spanned by U, by induction, we can
prove that Kp,(D~1(I— EoL1L51)D, 2) is spanned by D~ Up,.

e At the mth iteration, infGMRES will give the solution by

y« =argmin ((D™*(I—&oL1L;")D)(D ™ )y — 2
y

= argmin||D™H((I = &oL1Ly Umy — 2)”2 .
y

2

e Idea: we can choose D appropriately to guide GMRES to pick a more accurate
solution from the search space!

- Our goal is to minimize ||yl = || T(§0)X0 — 2|
where xo = (D' L Umy «)(1 : n).

S0 or lirellz = ||, 8 Tixo— 2|

’



Relation between residuals — 14/23 —

Lemma 2 Suppose vector y. € C™ is the solution for some weighting matrix D. Then,
the polynomial-wise residual rp = Zfzo E’Ozjo — z can be represented as

_ro_
P j—1 P j—2 ra
rP:[I’_Z 0 -,-_/I_Z 0 7-jl"'I_Tp] . 7
j=1 j=2 :
| Tp
where o
ro
I -1 A
T = U= EoL1 Ly Vmy « — 2.
_rp_

e rj can be adjusted by D.

e We can decrease the residual by balancing the sum

p
j—1
Irell < lirollz + || > 86 75 [ lrallz + -+« + U Toll2li -
j=1



How to choose expansion points



A brief guideline on choosing expansion points
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2 equidistant points
on inner ellipse

4 equidistant points
on inner ellipse

A single expansion
point at center

Well-conditioned ?

Yes
{

2 equidistant points
on the contour

Add more expansion
points

— : If not converge

4 equidistant points
on the contour

Add more expansion
points




Numerical Experiments



Test problems

— 16/23 —

e Information of test problems.

- n: the size of the problem.

- k: the number of the eigenvalues to be computed.

— N: the number of quadrature nodes.

- Nep: the number of expansion points.

- ts, tig: the times consumed by Beyn’s method with MATLAB backslash and with

iINfGMRES.
Problem Type n k N nep ts(s) tic(s) (ts—tig)/ts
spring QEP 3000 32 1024 o6 3.472 15.72 —353%
acoustic_wave_2d QEP 9900 10 512 5 28.14 9.475 66%
butterfly PEP 5000 9 512 9 11.54 8.453 27%
loaded_string REP 20000 10 128 4 1.07 9.805 —816%
photonics REP 20363 16 3060 18 600 209.7 65%
railtrack2_rep REP 35955 2 128 1 533.4 71.95 87%
hadeler NEP 5000 13 32 1 40.2 46.6 —16%
gun NEP 9956 21 1024 10 501.2 148.9 70%
canyon_particle NEP 16281 5 256 4 40.94 7.652 81%




Overall performance — 17/23 —
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The times consumed by different operations — 18/23 —

100%---- = = --- == -!—--- ===
< 80% ' . I .
s B Rest
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= 20% |-
A 20 Al © ¢ e® et o A\
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x> O Q AKX o™
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e Most of time is consumed by the Arnoldi process (matrix-vector multiplications and
orthogonalization).

e When the size of the matrices grow higher, the time consumed by matrix
factorization increases dramatically.
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e SUMMary
- infGMRES can be employed in contour integral-based nonlinear eigensolvers to
reduce the cost of solving linear systems.

— We propose the convergence-accelerating weighting strategy, the
memory-friendly TOAR-like trick, and the selection strategies of the parameters,
making infGMRES robust and efficient in practice.

— Our algorithm can achieve a speedup up to 7x on the test examples.

e Ongoing work

- Develop a machine learning-based adaptive strategy for selecting expansion
points automatically.

- Implement a block variant of infGMRES.

Thank you for your attention!

Contact: yugliu2Zl@m.fudan.edu.cn
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Compact representation
of the Arnoldi basis



Compact representation of the Arnoldi basis — 20/23 —

e The Arnoldi process on Llﬁal can be rearranged into

ngm,o lejm,o [Om, Gm+11Um+1,0
L1L5 Um = L1L77 ] = ] s H,, =Umn1H,,
QmUm,p QmUm,p [Qm, Qm+1]am+1,p

where
QmeC™™, QrQm=I, Up;eC™", j=0,...,p.

e Then, we can set

. U, :
Qm+1 < [Om, Am+1], Umns1,j < [ o

um+1,j—1i| :

e TOo store U, in this way, we need to store Q,, by O(mn) memory and Um,j forj=0,
..., m—1 by O(m3) memory.

e When n is very large, O(mn + m3) € O(m?n).



Comparison
on different weighting strategies



Comparison on different weighting strategies — 21/23 —

e NOo weight: D =1.
e Scalar weight from [Betcke 2009]:

p=( QIE )”" H_| P
IT®O)ptllz) |

PPI
e Our weight:
I, &6 “TilI2
dO — 1/ dS — p Y-_S ’ Y — '13_2 j—3 2/ S= 1/ . ’ p;
”Zj=s EO 7—1”2 ”ZJ=3 0 7—1”2
_doI _
I
D= dh




Comparison on different weighting strategies

— 22/23 —

X 104

Full picture of two sides

f Y
< :
\ 7
\ 7
\ /
\ 4
\\//
2 4 6 8 10
Real A %« 10%
«10% No weight
0.08-99 // b)
0.98 -
0.97 e
0.95 /
0.9 /
00'2776 A
027 9
0.76 \
0'8 95 >
097 SN
09808 ™
| 0.9 0 T—_
1 2 3 4 5
Real )\ % 104

——Integral contour
Right expansion point
P Right quadrature nodes
Left expansion point
q Left quadrature nodes

%« 10% No weight
- T \ I0.98 T T =
0.98 (c)
~
0.97
S 7005
\, 0.93
\. 0.87
X Oc5721
)> 0.21
7 0.7
A 09!
d 0.95
o 09‘5(33.97
1 ‘\/ |098 . 1 1
0.8 0.9 1 1.1 1.2
Real )\ % 105



Comparison on different weighting strategies
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